[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15143

B. Tech 5th Semester Examination Numerical Methods (OS)

AS-5012

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five question selecting one question from each section A, B, C, D. Section E is compulsory.

SECTION - A

- 1. (a) Find all the roots of the equation $x^3 2x^2 5x + 6 = 0$ by Graeffe's method (10)
 - (b) Using the method of False position, to find the 4th root of 32 correct to three decimal places. (10)
- 2. (a) State and prove the convergence criteria for iteration method to find the roots of an equation. (10)
 - (b) Find by Newton's method by real root of an equation 3x=cosx+1 correct to 4 decimal places. (10)

SECTION - B

- 3. (a) Solve the equations by Gauss Seidel method 2x+y+6z=9, 8x+3y+2z=13, x+5y+z=7 (10)
 - (b) Obtain by power method, the numerically dominant eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix} \tag{10}$$
 [P.T.O.]

2 15143
(a) Apply the partition method to obtain the inverse of the

matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$ (10)

(b) Using Jacobi method, find all the eigen values and eigen vector of matrix _

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
 (10)

SECTION - C

- 5. (a) Find Newton's divided difference formula and relation between divided and forward difference. (10)
 - (b) Apply Bessel's formula to find the value of f(27.5) from the table

X:	25	26	27	28	29	30	
f(x):	4.000	3.846	3.704	3.571	3.448	3.333	
						(10)

(a) From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80
No. of students	31	42	51	35	31
					(1

(b) Apply Lagrange's method to find the value of x when f(x)=15 from the given

. ,				
X:	5	6	9	11
f(x):	12	13	14	16

(10)

15143

SECTION - D

- 7. (a) Evaluate $\int\limits_0^6 \frac{dx}{1+x^2}$ using Simpson's 1/3 and Weddle's Rule.
 - (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Romberg's integration in two steps taking h=0.5 (10)
- 8. (a) Apply 4th order RK method to find approximate value of y(0.2). Given that $\frac{dy}{dx} = x + y$, y(0) = 1 taking step size 0.1
 - (b) Find by Taylor series method, the values of y at x=0.1 and x=0.2 to five places of decimal from $\frac{dy}{dx} = x^2 y - 1, \ y(0) = 1$

SECTION - E (Compulsory)

- State the advantages of Bisection method.
 - Discuss Gauss-Seidal method to solve system of (b) equations.
 - Explain the rate of convergence. (c)
 - Write a short note on Romberg integration.
 - Compare Gauss Jacobi and Gauss Seidal methods.
 - Prove that $\Delta = E\nabla = \nabla E$.
 - Write the Newton Backward divided difference formula.
 - Prove that divided differences are symmetric.
 - Write a sufficient condition for Gauss-Seidal method to
 - Write the standard five point formula to solve (10×2=20)