Total Pages: 05

D-180597

B. Tech. EXAMINATION, 2018

Semester IV (CBS)

THEORY OF COMPUTATION

CS-404

Time: 3 Hours

Maximum Marks: 60 -

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five questions in all, selecting one question from each Sections A, B, C and D. Section E is compulsory.

Section A

- 1. Define Finite Automata. Give clear cut distinction between following machines:
 - (i) Deterministic Finite Automat
 - (ii) Non-deterministic Finite Automata
 - (iii) Mealy Machine
 - (iv) Moore Machine.

2. Design a DFA M that accepts the language consisting of all strings over {a, b} that contain an even number of a's and an odd number of b's. Also modify M to M¹ which accepts all strings over {a, b} that do not contain an even number of a's and an odd number of b's.

Section B

- Define Pumping Lemma. If M = (Q, Σ, δ, q₀, F) be a finite automata with n states and L be the regular set accepted by M. Let w ∈ L & IwI >= M. If m>=n, then there exists x, y, z such that w = xyz, y = Λ, and xy'z ∈ L for each i >=0.
- 4. Construct the minimum state automata equivalent to a given automata M whose transition table is given below, where S2 is the final state.

 10

Present State	Next State		
	Input(a)	Input(b)	(
$\rightarrow S_0$	$\mathbf{S_1}$	S_5	
$\mathbf{s_{i}}$. S ₆	S_2	
$\mathbf{S_2}$.	S_0	S_2	
S_3	S ₂	S_6	

W-D-180597

2

S ₄	$\mathbf{s_i}$	S_6
S ₅	S_2	S_6
S ₆	S_6	S_4
S ₇	S_6	S_2

Section C

- 5. (a) Design CFG for the language consisting of all strings of even length over $\{a, b\}$.
 - (b) Define Pushdown automata. Differentiate PDA by empty stack and final state by giving their definitions.
 10
- 6. (a) Define Context Free Grammar. Determine how a sentence can be formed from the rules of grammar. Your sentence is: "Itchy the apple eats a jumpy jumpy jumpy dog."
 5
 - (b) If G is S $\rightarrow aS \mid bS \mid a \mid b$, find L(G). 5

Section D

7. Define Turing Machine. Design a Turning Machine over $\{1, b\}$ which can compute concatenation function over $\Sigma = \{1\}$. If a pair of words (w_1, w_2) is the input the output has to be w_1w_2 .

- 8. (a) Given an instance of PCP with a pairs (x₁, y₁), (x₂, y₂),.....(x_n, y_n) and character set of PCP containing only one alphabet, can you write an algorithm to find the solution of PCP, if it exists.
 - (b) The lists A and B given in the following are an instance of PCP. Find the solution for given PCP:
 5

	Α	В
1	- 0	01
2	0101	1
3	100	0010

Section E

- 9. Answer the following questions: 10×2=20
 - (a) What is the purpose of Theory of Computation?
 - (b) State two differences between DFA and NFA.
 - (c) Define CNF.
 - (d) Draw Chomsky hierarchy of languages.
 - (e) What is multi-head Turning Machine?
 - (f) Write regular expression for set of all strings such that number of 0's is odd.

W-D-180597

4

∴ y.

P.T.O.

- (g) Describe the instantaneous description of a PDA.
- (h) Design of DFA to accept the binary number divisible by 3.
- (i) State Church's Thesis.
- (j) State differences between CNF and GNF.