Roll No. Total Pages: 05

July-22-00275

B.Tech. EXAMINATION, 2022

Semester IV (CBCS)

THEORY OF COMPUTATION

CS-404

Time: 3 Hours

Maximum Marks: 60

P.T.O.

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt *Five* questions in all, selecting *one* question from each Sections A, B, C and D. Q. No. 1 is compulsory.

(Compulsory Question)

(a) Represent the following set by a regular expression {1²ⁿ | n ≥ 0} and describe the following regular expression 0(0 + 1)*01 in a set representation format.

(b) Find all strings of length 4 or less for the following regular expression a(a*b + b*a)*b and design a DFA for the regular expression (0 + 10)*.

(c) Differentiate between DFA and NDFA.

(d) Consider a grammar G whose productions are $S \to 0S/\Lambda$, what will be the language of this grammar.

(e) Define PDA and Context Free Grammar. 2

(f) Differentiate between DPDA and NPDA. 2

Show the left most derivation for the string a * a + a for the following grammar: 2 $E \rightarrow E + E / E * E / (E) / a$

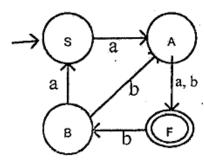
(b) Define TM and differentiate between PDA and TM. https://www.hptuonline.com
2

(i) Define Non-deterministic TM.

(j) Differentiate between recursive and recursive enumerable languages. 2

Section A

- 2. (a) Prove that $L = \{ww^r \mid w \in (a+b)^*\}$ is not regular.
 - (b) Design a DFA for the following regular expression P = 0(01)*1 + 1(10)*0.


W-July-22-00275

2

Minimize the following DFA M = $(\{q^0, q^1, q^2, q^3, q^4, q^5, q^6\}, \{a, b\}, \delta, q^0, \{q^6\} \text{ where } \delta \text{ is given as :}$ $\delta(q^0, a) = q^0, \delta(q^0, b) = q^3, \delta(q^1, a) = q^2,$ $\delta(q^1, b) = q^5, \delta(q^2, a) = q^3, \delta(q^2, b) = q^4,$ $\delta(q^3, a) = q^0, \delta(q^3, b) = q^5, \delta(q^4, a) = q^0,$ $\delta(q^4, b) = q^6, \delta(q^5, a) = q^1, \delta(q^5, b) = q^4,$ $\delta(q^6, a) = q^1, \delta(q^6, b) = q^3.$

Section B

- (a) Define Grammar and its types i.e. Regular, CFG,
 CSG and Phrase Structure Grammar.
 - (b) Find the regular expression for the Finite Automata given in the figure below using Arden's Theorem.

- 5. Write short notes on any two of the following: 10
 - (a) Halting Problem of TM
 - (b) Decidability and undecidability
 - (c) PCP.

Section C

- 6. (a) Design a TM for deciding the language $M = \{0^r \ 1^r \ 2^r \mid r \ge 1\}.$ 5
 - (b) Design a PDA which will recognize the elements of the following set $\{0^r \ 1^r \mid r \ge 0\}$. 5
 - 7. (3) Convert the following NDFA into DFA.

State	Input	
	0	1
q ⁰ (Starting State)	q^1, q^2	q^1
$\frac{1}{q^1}$	q^3	q^2
q ² (Final State)	q^2	q^1
q^3	q^2	q^4
q^4	q^3	q^4

(5) Convert the following Melay Machine into

Present	Next State			
State	Input = 0		Input = 1	
	State	Output	State	Output
SI	S3	0	S2	0
S2	S1	1	S4	0
S3	S2	1	S1	1
S4	S4	1	S3,	0

P.T.O.

Section D

- 8. (a) Convert the following CFG into CNF: 5 S \rightarrow aAD, A \rightarrow aB, A \rightarrow bBE, B \rightarrow b, D \rightarrow d, E \rightarrow e.
 - (b) Convert the following CFG into GNF: 5 $S \rightarrow AA$, $S \rightarrow a$, $A \rightarrow SS$, $A \rightarrow b$.
- 9. (a) Prove that the following grammar is ambiguous: 5
 S \rightarrow aB, S \rightarrow ab, A \rightarrow a, A \rightarrow aAB, B \rightarrow b, B \rightarrow ABb
 - (b) Consider the following production: $S \to aB$, $S \to bA$, $B \to bS$ $B \to aBB$, $B \to b$, $A \to aS$, $A \to a$, $B \to bAA$

For the string "aaabbabbba" find:

- (i) Left most derivation
- (ii) Right most derivation.

5