[Total No. of Questions - 9]	[Total No. of Printed Pages - 4]
(2066)	(

16114(J)

-- June-16

B. Tech 6th Semester Examination

Compiler Design (NS)

CS-322/IT-325

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each of the sections A, B, C & D of the question paper and all subpart of question no. 9 (section-E) which is compulsory.

SECTION - A

- (a) What is a translator? Discuss the role of various phases
 of the compiler in the translation of source program to
 object code. (10)
 - (b) Describe the architecture of compiler. What are the different components and types of compiler? (10)

OR

- 2. (a) Prove the theorem that if L is accepted by deterministic finite automata, then L is denoted by a regular expression. (10)
 - (b) Symbol table is necessary for compiler construction, Justify your statement with example. Also discuss the advantages and disadvantages for single and multipass compiler. (10)

2

16114

SECTION - B

3. Translate the executable statement of the following C program

```
main()
{
    int I;
    int a [10];
    i=1;
    while (i<=10)
    {
        A[i] = 0;
        i = i+1;
    }
}
into
```

- (i) a syntax tree
- (ii) postfix notation
- (iii) three address code. (20)

OR

4. After Computing FIRST and FOLLOW functions, construct predictive parsing table for the following grammar:

```
E \rightarrow TE'
E' \rightarrow TE'/\epsilon
T \rightarrow FT'
T' \rightarrow *FT/\epsilon
F \rightarrow (E) / id
(20)
```

SECTION - C

 Define Directed Acyclic Graph. By taking a suitable example show how DAG representation could be helpful in code optimization. (20)

OR

6. Write the semantic actions to generate the three-address code for function call and return statements of any language you are familiar with. (20)

SECTION - D

- 7. (a) What is DAG? What are its advantages in context of optimization? How does it help in elimination of common subexpression? (10)
 - (b) Specify the necessary and sufficient conditions for performing:
 - (i) Constant propagation
 - (ii) Dead code elimination

OR

Construct DAG for the following code sequence:

*P := C

D := A[J]

E:= *P

*P := A [1]

Assume that:

- (i) P can point anywhere.
- (ii) P point to only B or D.

(20)

[P.T.O.]

(10)

SECTION - E

- Answer short answer type questions:
 - (a) What is lexeme? Define a regular set.
 - (b) Define LR(0) ITEMS
 - (c) How semantic rules are defined?
 - (d) What are the benefits of using machine-independent intermediate form?
 - (e) Mention the application of DAG.
 - (f) Define back patching.
 - (g) What are the characteristics of peephole optimization?
 - (h) Give the block diagram of organization of code optimizer?
 - (i) Do we really need a two-pass assembler? Why?
 - (j) What are the two standard storage allocation strategies? (2×10=20)