Roll No.

Total Pages: 05

MAR-21-210152

B. Tech. EXAMINATION, March 2021

Semester V (NS)
FLUID MACHINES
ME-311

Time: 3 Hours Maximum Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary continuation sheet will be issued.

Note: Attempt Five questions in all, selecting one question from each Sections A, B, C and D. Q. No. 9 is compulsory.

Section A

 (a) A jet of water 8 cm in diameter and at a velocity of 20 m/s of curved vanes at the centre moving at velocity of 7 m/s. The vanes are so arranged that each vane appears before the jet in the same position and at the same velocity. The jet is deflected through 160°. Find the normal force exerted on vanes, the work done per second and the efficiency of the system.

(b) A nozzle of 50 mm diameter delivers a stream of water at 20 m/s perpendicular to a plate that moves away from the jet at 5 m/s. Find : the force on plate, work done and efficiency of jet.

10

Design a Pelton wheel which working under a head of 80 m at 300 rpm. It produces a power of 125 kW with an overall efficiency of 85%. The speed ratio for the turbine is 0.45 and the coefficient of velocity of nozzle is 0.98.

Section B

3. The Francis turbine data: Net head H = 60 m, Speed N = 700 r.p.m., shaft power = 294.3 kW, η₀ = 84%, η_h = 93%, flow ratio = 0.20, breadth ratio n = 0.1, outer diameter of the runner is 2 times inner diameter of runner. The thickness of vanes occupies 5% of circumferential area of the runner, velocity of flow is

P.T.Q

W-MAR-21-210152

2

constant at inlet and outlet and discharge is radial at outlet. Determine: Guide blade angle, runner vane angles at inlet and outlet, diameters of runner at inlet and outlet and width of wheel at inlet.

4. A Kaplan turbine working under a head of 20 m develops 15 MW brake power. The hub and runner diameter of the turbine are 1.5 m and 4 m respectively. The guide blade angle at the inlet is 30°. The hydraulic and overall efficiency is 0.9 and 0.8 respectively. The discharge is radial. Find out the runner vane angles and turbine speed.

Section C

- State Buckingham's π-theorem. The efficiency of η of a fan depends on density ρ, dynamic viscosity μ of the fluid, angular velocity ω, diameter D of the rotor and the discharge Q. Express η in terms of dimensionless parameters.
- Explain the working of hydraulic ram with neat sketch. What are its advantages? Also explain the characteristic curves for hydraulic ram.

3

Section D

- A centrifugal pump rotating at 1000 r.p.m. delivers
 160 litres/s of water against a head of 30 m. The
 pump installed at a place where atmospheric pressure
 is 1 × 10⁵ Pa (abs) and vapour pressure of water is
 3 kPa (abs). The head loss in suction pipe is
 equivalent to 0.2 m of water. Calculate: Minimum
 NPSH and maximum allowable height of the pump
 from free surface of water in the sump.
- Draw the indicator diagram for reciprocating pump considering acceleration and friction head in suction and delivery pipes and find an expression for the work done for a single reciprocating pump.

(Compulsory Question)

- 9. (a) What are various impingement of jets?
 - (b) Define efficiency of Pelton wheel.
 - (c) What is draft tube and its functions?
 - (d) Define Euler's equation for turbomachinery.
 - (e) What is specific speed?

W-MAR-21-210152

P.T.O

4

(5-18/17) W-MAR-21-210152

- (f) List dimensionless numbers.
- (g) What is Thomas's cavitation number ?
- (h) Write a short note on hydraulic press.
- (i) What is priming of centrifugal pumps ?
- (j) Define NPSH in pumps. $10\times2=20$

https://www.hptuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay ₹

(5-18/18) W-MAR-21-210152

- 5

https://www.hptuonline.com